Carbonfaserbewehrte Betonbrücke: Unterschied zwischen den Versionen

K
Markierung: 2017-Quelltext-Bearbeitung
K
Zeile 19: Zeile 19:
  
 
==== Potenziale der Bauweise/des Vorgehens ====
 
==== Potenziale der Bauweise/des Vorgehens ====
 
Materialeinsparung durch schlanken Überbau, dadurch geringerer Rohstoffverbrauch und weniger CO<sub>2</sub>-Emissionen; leichtere Bauteile und damit geringerer Aufwand im Transport und Einbau; Langlebigkeit durch Korrosionsbeständigkeit und hohe Betonqualität; geringer Wartungsaufwand <!-- soll dies im Sinne der Einheitlichkeit hier stehen bleiben oder beschränken wir uns auf die Checkboxen? -->
 
  
 
<i class="bi bi-square"></i>&nbsp;&nbsp;&nbsp;Energiebedarf
 
<i class="bi bi-square"></i>&nbsp;&nbsp;&nbsp;Energiebedarf
Zeile 38: Zeile 36:
 
==== Einschränkungen/Hemmnisse der Bauweise/des Vorgehens ====
 
==== Einschränkungen/Hemmnisse der Bauweise/des Vorgehens ====
  
Eingeschränkte Anwendbarkeit in Bezug auf Abmessungen, Tragwerksart und Statisches System der Brücken; eingeschränkte Trennbarkeit der Carbonfaserbewehrung vom Beton
 
  
 
<i class="bi bi-check-square-fill"></i>&nbsp;&nbsp;&nbsp;Begrenzte sinnvolle Anwendbarkeit
 
<i class="bi bi-check-square-fill"></i>&nbsp;&nbsp;&nbsp;Begrenzte sinnvolle Anwendbarkeit

Version vom 25. Juni 2024, 14:14 Uhr

Ergänzung zum Leitfaden: 3.5 Beispielsammlung


außerdem in: 3.2 BrückenBauteildimensionierung

Ressourceneffizienzansatz in

   Ausschreibung/Vergabe (administrativ)

   Ausführung (technisch)

Beschreibung

Als Beispiel für die Ausführung von Brücken mit Textilbeton dient die weltweit erste ausschließlich carbonfaserbewehrte Betonbrücke in Albstadt-Ebingen. Der als Trogquerschnitt konstruierte Überbau besitzt eine Spannweite von 15 m. Durch die im hochfesten Beton verlegte Carbonfaserbewehrung sind aufgrund der Korrosions-beständigkeit und einer damit einhergehenden Betondeckung von nur 15 mm geringe Materialstärken möglich (Trogwände: 70 mm, Gehwegplatte: 90 mm). Der Überbau wurde als monolithisches Fertigteil hergestellt und vor Ort am Stück eingehoben. Für die Ausführung war eine Zustimmung im Einzelfall (ZiE) erforderlich.[1]

Ort/Pilotanwendung

Albstadt-Ebingen

Jahr

2015

Potenziale der Bauweise/des Vorgehens

   Energiebedarf

   Rohstoffverbrauch

   CO2-Emissionen

   Kosten

   Wasser

   Dauerhaftigkeit

   Geringe Verkehrsbeeinträchtigung

Einschränkungen/Hemmnisse der Bauweise/des Vorgehens

   Begrenzte sinnvolle Anwendbarkeit

   Eingeschränkte Trennbarkeit der Materialien

   Geringe Individualität

Literaturverzeichnis

  1. Helbig, T.; Rempel, S.; Unterer, K.; Kulas, C.; Hegger, J. (2016) Fuß- und Radwegbrücke aus Carbonbeton in Albstadt-Ebingen. Beton- und Stahlbetonbau 111, H. 10, S. 676-685.